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VISCOELhSTIC PROPERTIES OF ENTANGLED POLYMERS .

IV. BINARY BLENDS OF MONOD1SPERSE HOMOPOLYMERS

by

D. Soong and M. Shen
Department of Chemical Engineering

University of California
Berkeley, California 94720

and

S. D. Hong
Jet Propulsion Labora tory
Pasadena , California 91103

/ ABSTRACT

In a previous publication from this laboratory , the Rouse-Bueche-

Zirnm molecular theory of viscoelasticity has been extended by using a

transient network model to apply to monodisperse polymers with chain

entanglements. Effects of the entanglements were modeled both by the

enhanced frictional coefficients and by the additional elastic couplings

resulting from the transient entanglement network . For binary blends

consisting of two monodisperse polymers with different molecular

weights, additional modifications are now required to predict their

linear viscoelastic behavior. It is recognized that entanglements

not only may form between chains of the same lengths, but also between

those of different lengths. For the latter case, the longer chain

will in fact have the frictional coefficient of the shorter

chain at the point of entanglements. The frequency of such

interactions is assumed to be proportional to the weight ratio of

the respective component chains in the blend. Equations of motion are

formulated for each component and solved numerically for the ielaxation

spectra . Linear viscoelastic parameters such as the dynamic
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mechanical moduli , stress relaxation moduli, and zero shear

viscosity can then be computed for the blends 
~

y linear

summation of those of the components . The reduced steady

state shear compliance of the blends can also be computed

from knowledge of the component relaxation times. Results

are found to be in excellent agreement with literature data on

polystyrene, poly(dimethyl siloxane) and poly (methyl methacrylate).

j IN TRODU CTION

The molecular theory of viscoelasticity for isolated

polymers expounded by Rouse (1), Bueche (2), and Zimm (3) has

previously been extended by a number of workers (4—9) to predict

the viscoelastic properties of bulk polymers with molecular

weights exceeding their critical entanglement molecular weights ,

M .  In recent series of publications from this laboratory (10—12)

several models were considered which incorporate the effects

of enhanced friction and elastic coupling of the entangled

chains. The most successful , and intuitively most reasonable ,

model envisions the entangled systems as forming a three dimen-

sional transient network (12). The predicted linear visco-

elastic properties for monodisperse entangled polymers were

found to be in excellent agreement with literature data for a

number of systems.

Attempts to describe the viscoelastic properties of polymer

blends from those of their known monodisperse fractions are

motivated by its potential engineering applications to the mixed

system. In addition , an understanding of the multitudinous intcr-

actions among the components may provide a possible means toward

- . —- 
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predicting the viscoelastic properties of the polydisperse

polymers. A number of workers invoked some empirical blending

rules to obtain the relaxation spectra of mixtures from their

constituents (13-18). However , polymer molecules should behave

dif ferently in a blend than in their pure State because of the

interactions with the coexisting components of different chain

lengths. The response and motion of the fractions must therefore

be mutually affected by all the components present in the blend.

The resulting relaxation spectra associated with any given

component must be different in a blend from that in the pure ,

unmixed state. Merely mixing the unmodified relaxation spectra

of the components to form the relaxation spectra for the

blend without taking into account of the aforementioned

mutual interactions between the components would be inadequate

in describing the viscoelastic behavior of polymer blends.

In this work, we shall apply the transient network model

(12) to binary blends by incorporating the effect of the co-

existing components on chain dynamics. We are then able to

obtain the modified relaxation times for each component. The

linear viscoelastic properties of the blends are subsequently

obtained by summing properties of the corresponding component

calculated by the modified relaxation times.

THEORY

In a polymer blend made of monodisperse fractions whose

molecular weights exceed the critical molecular weight , all

the polymer molecules entangl. with their surrounding neighboL~

to constitute a three dimensional network structure . The

-~~~~~~~~~ _ _
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difference between this kind of network and the ones formed

by the monodisperse components alone is that in the blend

entanglements may be formed from chains of different lengths.

The chain dynamics in these systems may be expected to differ

significantly from the monodisperse polymers.

Following the transient network model for monodisperse poly-

mers, the equation of motion for an unentangled bead B is (12)

s kT ~lnip 3kT
= V - c ~~k - 

~B
<
~~

> 
(_x

k+l + 2Xk 
_x

k_1 ) (1)

where k#0,N, N is the total number of beads in the chain and

is the mean square end-to-end distance of a statistical

segment, Xk and xk are respectively the x-component of the

coordinates and velocity of the kth bead , V is the velocity
k

of the medium surrounding the kth bead , 
~B 

is the frictional

coefficient of the unentangled bead , and ~~‘ is the segmental

distribution function .

For an entangled bead A , the corresponding equation

assumes the following form :

s kT alnip 3kT
= — r~ ~~ 

— 

~A~<b~
> 

(_ X ~~~~~ + 2 xj 
_X ~~_1 )

N

— 

~~ 
~~~~ (X . — X ’) (2)

A
3 ~ i=l

ct
where ~~~~ .. = . (3)

31 (J—1
~
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and j~ i#k, ~A 
is the frictional coefficient of the entangled

3
bead at x

3
. The fourth term on the right-hand side of Eq. 2

accounts for the elastic coupling forces acting between all

pairs of Ne entangled beads (12). They are inversely propor-

tional to the interbead distance as shown in Eq. 3. ~ is a

parameter to account for the fact that the entanglement is not

as effective as a permanent crosslink in transmitting force ,

since entangled chains can slip by each other. Its value is

between 0 and 1. Throughout the calculations , the enhanced

frictional coefficient is assumed to have the high-friction—
3

inside distribution , i.e., entangled beads near the chain middle

have higher frictional coefficients than the ones at the chain

ends. This type of distribution is not only intuitively reason-

able , but also has been found to fit the experimental data very

well for monodisperse polymers (12).

In a polymer blend made of monodisperse fractions having

different molecular weights, further modifications of the equation

of motion must be imposed. For simplicity the following derivation

will be given for a binary blend. Extension to multiple blends

can be similarly analyzed. We begin by assuming that the blend

is a homogeneous one, and shows no evidence of microphase sepa-

ration. This assumption may be considered valid for the type of

blends under consideration , i.e., blends of different molecular

weight fractions of the same polymer. The absence of heterogeneous

domain formation is one of the basic tenets of the RBZ model.

For a given component chain in a binary blend , it can form en-

tanglements with another chain of the same length or that of

a different length. The probability of entanglement formation
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between chains belonging to dif f erent components and those belonging

to the same component in a well-mixed blend is expected to be propor-

tional to the abundnace of the components if we assume that the ten-

dencies for chain segments to entangle are the same irrespective of

the chain lengths as long as they exceed the critical molecular weight.

The ratio of inter-component and intra-component entanglements is

therefore dependent upon the composition of the blends, being propor-

tional to the weight ratio of the components according to our assumption.

Here, inter—component entanglement is defined as entanglement formed

between two beads belonging to chains of different lengths , and intra-

component entanglement corresponds to that between chains of the same

length .

Entanglement formation restricts chain motion of both chains at the

entangled point. The extent of retardation is the same for both chains.

At an inter-component entanglement, motion of the longer chain is

facilitated because it is entwined with a shorter chain. This serves

to reduce the frictional coefficient of the longer molecule at the inter-

component entanglement point. In other words, the longer molecule now

has the smaller frictional coefficient previously associated with the

shorter molecule while the frictional coefficient of the shorter molecule

remains unchanged . This is a reasonable assumption, since the f r ictional

coefficients must be the same for both beads f rom either chain at the

pcint of entanglement. Because of the greater mobility of the shorter

chain, the entangled beads on both chains now are less restrained . We

can now write the equation of motion for such a system in matrix

flotation as: 
~ . ~ . —l

Yx
D
B~~ X ° B~~ ~~~~

where 5c and X are column vectors of velocity and position of the beads
respectively, V is the x-component of the velocity of the surrounding

medium , DB = is the diffusion coefficient, 0B = ~~T and
B <b0>fa

T i1,_~ ~~~~~~~~~~~~~~~ -
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is the inverse of the diagonal matrix

1
( 1)

D = 

1~ 2)

o
I 

_ _ _ _where 6. ~ and now is the modified high-friction-
B j

inside distribution of the enhanced frictional coefficients.

For a given component in a binary blend , a number of the

are chosen randomly to be replaced by those corresponding to

the other component so as to represent inter-component entan-

glements. The frequency of such exchange is proportional to

the amount of the latter component present in the blend . 
~e 

is

the modified version of the nearest-neighbor matrix for an en-

tangled polymer. As an example , the form of 
~e 

for a chain with

alternating entangled and unentangled beads is:

1 — 1 0 0 0 0 . . .

1 2+y 2 — l £ 24 0 6 26
= 0 — l 2 — 1 0 0 ... ( 6 )

0 C 42 — l 2+y4 —1 646

0 0 0 — l 2 -1

~ 
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where .
1 i~ 1

i=l (7)
j~~(i—l ) , i , (i+l)

We can write a matrix equation for each component in the

blend and , upon solving it , obtain the relaxation times of the

component given Lw

‘p = (8)

where is the p—tb cigenvalue of o l Ze• The interactions

between components have been incorporated into the matrix equa-

tions, the resulting component relaxation times are therefore

the modified relaxation times. The deqree of modification

depends on the composition ~is explained before , the calculated

relaxation times for  the components hold true only for  the

par t icu lar  composition for  which the ca lcu la t ions  have been

carried out.  The r e l axa t ion  t imes fo r  the same component polyme r

chain vary w i t h  the composition of the blend.

Fur ther  re f inement  must  be introduced to our basic theore-

t ical  framework upon recocmition of the fac t  that  these in ter—

component entanglements  can take place at d i f f e r e n t  positions

along a g iven chain.  Since we have adopted the high-friction-

inside d is t r ibut ion  as our basis , replacing f r i c t iona l  coeffi-

cients means utilizing a different set of numbers when the en-

tanglements occur at d i f f e r e n t  positions along both chains.

Two approaches can be employed to tackle this problem.
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The first method is to selec t randomly the beads whose

frictional coefficients are to be changed , and then calculate the

relaxation times from which the various viscoelastic properties

can be found . The whole procedure is repeated many times and the

resulting viscoelastic properties are averaged in an attempt to

produce a good representation of the system . This is the “post-

averaging” method .

The second method assumes that all the entangled beads along

a given chain have equal probability of forming intercomponent

entanglements with any of the entangled beads of the other components.

As an example, consider a 50/50 weight percent binary blend . A

given entangled bead on a given chain is involved in inter-component

entanglement half of the time and intra-component entanglement the

other half of the time over a long period of observation.

Equivalently , for a mixture containing a huge number of molecules ,

for the same entangled point, half of the molecules are involved

in inter-component entanglement formation and the other half in intra-

component entanglement at any given instant. We can therefore

“pre-average” the frictional coefficients and use the resulting

average to set up the matrix equations as a representation of the

collection of chains in the mixture .

Suppose that our example of a 50/50 (by weight) binary

blend is made of components having 10 and 20 entanglements

respectively . Based on the “equa l ‘entangling tendency” assumption,

five out of the ten entanglements in the shorter component are

involved in inter-component entanglements on the average, and

-~~ -~~~ — ——--- -  ------- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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ten out ct t w e n t y  f o r  the lon~ier eomp men t . rh€ ~ post ~avera~ i zi g

met hod random l y selects ten ot the ~ ‘ s in  the D mat r i  x correspond—

i n~; to the longer cumponen t and i t ’! 1 aces t hem by t host’ co: respo~~ i i

to  t he  shor t  et coniponent  . The t i n; t ’ ted values a t e  also picked

randoml y t rom t he ~ ‘ s o t the shorter c~~:ponents. The r e s u l t:  ng

v i s c o c l a st  ic p ar a m e ter s  a t e  c a l c u L t t  ed and stoted n the memory

bank, and at  the end o t the comput  a t  i on , the tot ed data a: e

to obt at n the “pus t — av er a~ied”  proper t i e~

It the ran~~ m so lee t on process is rt’pea ted many t imos  , event-

ual ly any  entang lement a I on~ t he  lon~ e r chain w i 11 assume t ts or iq i na 1

!rictional coefficient h a lt  ci t h e  times , while tor the other halt

of the times it will have t r i ct  t o n a l  coot f icients be l onq  t nq to the

shorte r component. Since we adopted the hi g h — !  r i ct ion— ins ide di s—

tribution ~l2) , i . e .  t~~ = ~~~~~~~ w h er e  i is  the position of the

e n t a n g l e m e n t  counted from chain ends , the proposed p r e av e r a~: i

me thod assigns the t r  : et i o n a l  coot ic tents acco rd ing  to the id low ing

r u l e :  N ,‘

k
I W l ’4 4 W  \~~ 1. ‘~~N ,.~~~A

3 
j k

when N is even;  and
t k N / .~

= W . l 4
~~ W~~j ( N  7~ + l)~ + .~

.( 
~~ L4) ) N~j - k L=l K

when N e is odd . In  eqs . 9 and 10 , W is the weiqht fraction and N
k

is the number ox. en tang lements  ot the longer component while sub-

scr i pt K refers to the short et component i n  the b lend . Eq . ‘) en su r e s

that the distribution is still h~ g h — f r i c t : o n  inside wh i l e  the e ff e c t

of inter—com ponent interactions is adequately taken into account

~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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For our example ot a 5i~) 50 L lend , equation 9 is just:

0.5 t 1~~~ + 0.’* (11)

S o l u t i o n  ci the post --av e r  a -z i ne me tj,~,d i s  time—consam i ng and

expensive in  the cost ot computations. One case has been tried and

was found t o  approach the p r e — a v ox aq j ug  r e s u l t  as the number of

• r e :  t e ra  t io n  ci the random s e lec t i o n  process increases . The p i e —

.i~ e r a~ t ng method is thus chosen t or the subsequent calculations .

Once the m o d i ti e d  r e l a x a t i o n  t i m e s  are  f o u n d , they  can be

used to calculate all the linear viscoelastic properties such as

rela x a t i o n  modulus ,  dyna mi c  modu .l i , steady -sta te shear comp l i a nce

and zero-shear viscosity by the w e l l-k n o w n  rel at ions ( 10 ) .  The

blend proper ties , except  f o r  t he  s to ady -s t a t e  shear compliance,

are just the linear sums of the  corresponding properties of compon-

ents because the relaxation times for each component are obtained

t r am the al read y m o d if i e d  m a t r i x  e q u a ti o n  to meet condi t ions

ex i s t  l u g  at  the p a r t i c u lar  c o m po s it io n  considered . The steady — s t a t e

shea r comp liance of the blend is ob t a ined  from the r e su l t i ng  relax-

a t ion  times of the components by the appropriate equation to be shown

later.

_ _ _  

~~~~~~~~-~~~--~~~~~~~~~~~ -~~~~~ ~~~~~~~~ 
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RESULTS AND DISCUSSION

In comparing the theoretical prediction with experimental

data, one of the computed curves was shifted in coordinates

until the terminal regions overlapped with data. All sub-

sequent curves were not adjusted further once the fitting

parameters have been chosen. The dynamic storage and loss

shear moduli were computed by:

2 2

G’ I = L~ c ~N L~i 2 2e p l+~

1 p
G” (w )  

~F 2 2 (13)
e p l+uu I

Figure 1 compares the theoretical results with data on

polystyrene blends. The solid curves are the computed curves.

The symbols represent experimental data by Onogi et al. (19).

To calculate the number of entanglements for a given mono-

disperse system (Ne)i M0 is assumed to be l.7x10
4 (10—12).

The two curves on the outside are for the pure components

of molecu lar weights of 5.9xl04 and 6.16xl05 respectively.

We can see that the experimental data on the shorter component

have not been accurately predicted. The reason is that the

equivalent n umber of en tanglements for this component should

be about 3.5. However , the computer program can only calculate

chains with integral n umber of entanglements and we are forced

to use N = 3. The middle curve is a 50/50 (by weight) blend

of the two components. The two-plateau tendency in the rubbery

region of the dynamic storage moduli is successfully predicted . 

— - — — -



I n addit ion , the corresponding max i mum near log “ 0 is also

in excellen t agreement w i t h  da t  a .  These phenomena a rt’

f r equen tly  observed f o r  b i n ar y  b l e nd s  ci two components hav in g

very different molecular weights. Fig. 2 shows r e su l t s  on

another set of po lys tyrene  bin ary blends by the same au thors  (19)

The blends a re 20/ 80 , 40 bO , t~0/40 , 80/20 by w e igh t .  Here the

shorter component has a mol ecu I a:- we i q h i co r responding  to 2 . 5

entanglements. it is assumed to have 2 entanglements in our

calculations. Agreement between theory  and e x per i m en t  is aqa i n

very good .

Figure 3 compares the ca l c ul a te d  curves w i t h  a sot of

dy namic mechanical da ta  on bl ends of p o l y (m e t h y l m e t h a c r y l a t e)

of molecular weights 4.lxlO 3 and l.74x104. The blends as in-

dica ted by the middle curves a l t ’ 90/10 , 80/20 , t~0 ‘40 , 30/70

• percent by weight , the f I u-st numbe r in t he pa i r o t numbers is

the weight  f r a c t i on  pe u t a i  n in q  t o  the 1 i t jh t ~~ component.

fo r PMMA is assumed to b~ 7 , 000 ( 2 1 ) .  Agreement between theory

and expe r imen t s  is good except  t h a t  the e x p e r i m e n t  a I dat a exh ib i

a more gr a d u a l  t e r m i n a l  req j o t : , possibly due to it s broader

• he terogenei ty  index (11 . 1. 1 . 2 5 ) .

The stress it’! axa t ion mod:: I i  calculated by the we 11 known

re lat ion

I — t  i (14)
N p

C p

are shown in F i g u r e  4 .  A l so  g iv e n  are  the e x p e r i m e n ta l  data

of Murak ami and One ( 1  ) t c i  monod I spe rse p01 ys t y rene f r ac t i o n s

- -  ~~~~~~~~~~ — -~~~—~~~~--~~~~~ --
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• with molecular weights of l .87 xl0 ’ and 5 .8 3x l 0 5 , as wel l  as the i r

72/25 and 50/50 blends. The agreement between theory and exper iment

is good , excep t tha t the  smal l  second p lat e au s  were not apparent

in the predicted curves .

To compute the stead y-state shear compliance , we ~t~c.tl1 that

by definition

Je = NkT~:i~~/ (NkT~~u . ) ~~ (15)

fo r a monodisperse pol yme r .  For a b i n a r y  blend , then

+ N 2 Y i
I 

~~~~~~~~~~~ ( l b )
R T ( N 1Y : ~ + N ) Y t . )

where t~~~~
’ S and :~~‘s are’ the  r e l a x a t i o n  t imes of components 1 and 2

respectively,  and N 1,N 2 are n umbers ot  molecules of components 1

and 2 per u n i t  vol ume , in  other words ,

~ + ~ 
2

= 
1” i 2’~~j  ( 17)

NRT(f ~~~ + f Y t . ) ’
l i  2 j

where f 1 and f 2 are mole t r a ct  ions of components 1 and 2 , i . e . ,

= 
w1/M1+w2/M 2 

and 
~2 

l-t 1
. The reduced steady—state shear

compliance for a binary blend is  thus

I +1 i _ j  ( 18)
eR + f 2 Y i  . )

or f ” i~ ~. 2  
+ 

W 2 ~~ 2\ (~ ‘i + 
W2

%
\

i M
2 

‘

~~~~~~~~
,L\

M
i 

M2 /  (19 )
eR 

~~~~~ ~~~~~~i M ,

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ — --- -- --—- .—•- -• -
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Figure 5 shows the Log 
~eR 

- W
2 

data for three sets of binary

blends of polystyrene . In addition to the data of Onogi (19) and

Akovali (2 2 ) , the more recert data of Porter and Prest (24) are also

included . Both the data of Onogi and those of Porter and Prest show

pronounced maxima , and are in fairly good agreement with our com-

puted curves. The molecular weights in the binary blend of Onogi

are 4.69xl04, l.67x105 and those of Porter/Prest are 9.72xl04,

4. 11x105 . The molecular weights in the Akovali blend , on the other hand ,

are l .25xl0 5 , 2 .67xl0 5 . The molecular weight ratio is much lower

than those in the former two blends . The 
~eR now exhibit a much

gentler maximum when plotted against W 2 .  The computed curves are

still in reasonable agreement with the data, although the predicted

max imum is sharper . Of course, if the molecular weight ratios in

the binary blends decreases further toward unity, then a horizontal

straight line would eventually be reached (a monodisperse system).

Thus the trend is consistent with expectation. In Figure 6 we com-

pare similar data of poly (methyl methacrylate), which ar e seen to

be in excellent agreement with the theoretical curve.

The zero—shear viscosity can be computed from the relaxation

spectra by

no ~~~~~ T~ (2 0)

The computed values are then plotted in Figure 7 against the weight

average molecular weight of the blends containing dif fe rent amounts of

the two component monodisperse polys tyrene frac tions. The predicted

curve is a straight line with a slope of 3.70, which is in good

agreement with the experimental data of polystyrene represented by

the circles (20).
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The variation of the blend viscosity as a function of com-

position is an important engineering property and also a good

criterion for testing our theory . Friedman and Porter (23) reviewed

an exhaustive list of mixing rules, and compared them with experi-

mental data . Following their convention , we plot in Figure 8 the

viscosities of binary polystyrene blends against the weight fraction

of the heavier component. The circles are experimental data (19)

and the solid curves are the theoretical predictions . The numbers

in the parenthesis give the equivalent entanglement bead number

for the two components from which the blends are made of.

Agreement between theory and experiments is seen to be excellent.

Figures 9 and 10 show similar plots for two other polymer systems ,

i.e., poly (methyl methacrylate) (21) and poly(dimethyl siloxane) (26).

Agreement is again very good .

For the cases examined above , all the viscosity - composition c

curves concave downwards . However , the polystyrene blends studied by

Akovali (22) revealed a somewhat sigmoidally-shaped curve . The only

significant difference between this blend and the others is that

the two components have a much smaller chain length difference in

the former (Figure 11) than in the latter (Figures 8-10). Interest-

ingly this trend is predicted by our theory (Figure 11). To further

scrutinize the effect of chain length differences between components

on the shape of the viscosity-composition curves, we show in Figure 12

the computed curves for a series of binary blends with varying

chain-length differences . We note that if the lengths of the two

components are not significantly different (up to a factor of two),

the curves are sigmoidal. The theory in fact predicts a minimum

L • -~~ -—- - - - - - ---- - ------ --- - ~~~~~~~~~~~~~~ — --- -
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in viscosity if the chains are of comparable lengths, which has

not been experimentally verified . The concave downward appear-

ance, on the other hand, will be observed for components whose

chain lengths differ more than a factor of two.

In conclusion, we can state that the transient network model

is successful in predicting the linear viscoelastic behavior of

monodisperse polymers (12) as well as their binary blends. The

important feature of the 4nodel for blends is that it is not

sufficient to just use some kind of mixing rules for the pure

components alone . Simple intuitive reflection of the binary system

will indicate that the cross entang lements between chains of

different lengths must also be taken into account. The good agree-

ment between the theoretical predictions and the literature data

appears to vindicate the validity of this model.
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Table 1: Parameters Used in the Calculations and the

Resulting 3eR and n0.

Polymer N+l Ne a 3eR ,Io

Polystyrene 7 3 I~~ 0.2 0.333 0.972

50/50 blend “ “ — l.92x10
69 34 “ “ 0.101 7.69xl03

Polystyrene 7 2 0.2 0.409 0.508
80’20 blend “ “ — 3 52
60/40 “ “ “ — 1 l3xlo
40/60 “ a’ “ — 2 37xl0
20/50 “ “ “ — 4 O9xlO
21 10 “ 0.269 6.29x10

Polystyrene 23 11 0 . 2  — 8.50.X10275/25 blend “ “ — 4.71x10
50/50 “ “ “ — 1 70xl03
69 34 “ “ — 6.7lxlO3

Polystyrene 7 2 0.2 0.402 0.499

90/10 blend “ “ 3 759 1 09
80/20 “ 3 824 2.82
70/30 “ “ “ 2 842 5 66
60/40 “ “ 2 073 9 62
40/60 a. “ “ 1 115 2 lOxlO
20/80 “ “ “ 0 591 3 68xl0
21 10 “ “ 0 .265  5.72x10

Polystyrene 15 7 ~~~ 0.2 0.336 l.52xl0
90/10 blend “ 0 828 1 74xl0
80/20 “ “ “ 1 023 2 5lxl0
70/30 “ “ “ 0 871 3 83x10
60/40 “ a’ “ 0 692 5 67x10
40/60 “ “ “ 0 445 1 lOxlO 2

20/80 “ ai 0 291 1 85x102
31 15 “ “ 0.193 2.82xl02

Polystyrene 13 6 0.2 0.396 8.4
90/10 blend “ “ 2 313 2.58x10
80/20 “ “ “ 1.808 7.76x10
70/30 “ “ ‘ 1 246 l.64x102
60/40 “ “ “ 0 874 2.85x102

40/60 “ “ 0 474 6.27x102

20/80 “ a’ 0 261 1.llxl03

49 24 “ 0.131 l.73xl03
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Table 1 (cont’d)

Poly (methyl— 13 6 0.1 0.410 l.O4xlO
Methacrylate) 90/ 10 blend “ “ 1.369 4.O3xlO

80/20 “ “ “ 2 143 1 29xl02

70/30 “ “ “ 1 428 2 76x102

60/40 “ “ “ 0 994 4 82xl02

40/80 “ “ “ 0 532 1 07xl03

20/80 “ “ 0 289 1 90x103

51 25 “ “ 0.127 2.OSxlO3

Poly(diinethyl— 7 3 I’
~ 0.2 — 0.972

Siloxane) 80/20 blend “ “ — l.02xl02

60/40 “ “ “ — 6 6lxl0
40/20 “ 

Ia — 2 44x103

20/80 •
~ 

al — 6.72x103

79 a. “ — 9.75xl03

L - - -  - - - H 
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CAPTIONS OF THE F iGURE S

Figure 1. Plots of dynamic storage moduli G’ (w) and loss

moduli G”(w) vs frequency for polystyrene . The

solid curves are computed curves. The symbols are

experimental data ( 1 9) .  The two outer curve s are

for  the pure components. The numera ls  at the bottom

of the curves indicate the numbe rs of entangled beads.

The curve in the middle (triangles) is a 50/50 (by

weight) blend.

Figure 2. Plots of dynamic storage moduli G’ (w) and loss

moduli G” (w) vs frequency for polystyrene . The

solid curves are computed curves. The symbols are

experimental data (19). The two outer curves are

for the pure components. The numerals at the bottom

of the curves indicate the nunthers of ent~r’igled beads.

The curves between those for pure components are

for 20/80, 40/60, 60/40, 80/20 (by weight) blends.

Figure 3. Plots of dynamic storage moduli G’ (w)  and loss

moduli G” (w) vs frequency for poly (methyl methacrylate).

The solid curves are computed curves. The symbols are

the experimental data (20). The outer two curves are

the pure components. The numerals at the bottom of

the curves indicate the numbers of entangled beads.

The curves between those of the pure components are

for 90/10, 80/20, 60/40, 30/70 (by weight) blends.

-------- ----—----—---- —------— 
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Figure 4. Stress relaxation moduli for polystyrene. The

solid curves are computed curves. The symbols

are experimental data (22). The two outer curves

are for the pure components. The ones between the

pure component curves are for 75/25, 50/50 (by

weight) blends.

Figure 5. Log-log plot of the reduced steady-state shear corn-

pliance of polystyrene vs weight fraction of the

heavier component. Triangles, circles and squares are

experimental data by Porter (26), Onogi (19) and

Akovali (22) respectively. Curves were all computed

by theory .

Figure 6. Log—log plots of the reduced steady—state shear

compliance of poly (methyl methacrylate) vs. weight

fraction of the heavier component. Circles are

data of Onogi (20). The curve was calculated by

theory.

Figure 7. Log-log plots of zero-shear—rate viscosity vs

molecular weight. The lines were the computed

curves. The circles are the experimental data (19)

for pure polystyrene components and blends, al l of

which fall on the same straight line with a slope of

3.7. The triangles are data on poly(methyl metha-

crylates) (20).

Figure 8. Zero-shear viscosities of two polystyrene binary blend

systems as a function of the weight fraction of the

heavier component. Circles are experimental data of

Onogi (19). Solid curves are theoretical predictions.
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Figure 9. Zero-shear v i scos i t i~~ of po ly (methy l  methacryla te )

binary blends as a function of the weight fraction

of the heavier component. Circles are experimental

data of Onogi (21). Solid curves are theoretical

predictions.

Figure 10. Zero—shear viscosities of poly(dimethy l siloxane)

binary blends as a function of the weight fraction

of the heavier component. Circles are experimental

data of Prest (25). Solid curves are theoretical

predictions.

Figure 11. Zero—shear vi~~ c-~siLies of polystyrene binary blends

as a f~~r i ct i on  ot the weight fraction of the heavier

cornp.nert~~. Circles are experimental data of Akovali

(22) - Solid curves are theoretical predictions.

Figure 12. Zero—shear viscosities of binary blends for five

d i f f e r ent systems wi th  d i f f e r e n t  molecular  wei ght

rat ios between the two const i tuent  components. The

curves are all calculated from the theory .
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